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Abstract—Indoor localization is important for a variety of
applications, such as location-based services, mobile social
networks, and emergency response. Fusing spatial information
is an effective way to achieve accurate indoor localization with
little or with no need for extra hardware. However, the existing
indoor localization methods that make use of spatial information
are either computationally expensive or sensitive to the complete-
ness of landmarks. In this article, we propose a novel, low-cost,
high-accuracy indoor localization method based on a landmark
graph. The experimental results show that the proposed method
outperforms the state-of-the-art methods.

Index Terms—Indoor positioning, landmarks, location-based
services, pedestrian dead reckoning (PDR), smartphones, spatial
information.

I. INTRODUCTION

WHILE the global navigation satellite system (GNSS)
has been successfully applied in a variety of fields,

such as car navigation, geofencing, and target tracking, it
cannot be used in indoor or urban environments where the
GNSS signal is blocked by buildings, trees, or other obsta-
cles. Compared with outdoor positioning, indoor localization
is more challenging since indoor spaces are more compli-
cated than outdoor environments in terms of layout, topology
and space constraint [1], and indoor applications need higher
accuracy [2].

A number of indoor localization systems have been
proposed in recent years [3]–[5], which use different tech-
niques, such as WiFi, ZigBee, Bluetooth, ultrawideband
(UWB), radio-frequency identification (RFID), and inertial
sensors. However, each of these techniques has its own draw-
backs when considering accuracy, cost, coverage, complexity,
and applicability. In order to achieve higher accuracy with
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relatively low cost, hybrid methods combining multiple posi-
tioning techniques have been used. Common hybrid methods
include multimodal fingerprinting [6], dead reckoning (DR)
with WiFi fingerprinting calibration [7], and cooperative local-
ization [8]. The problem of combining several positioning
techniques is that the required infrastructure may not be avail-
able in many environments or it may be available at a high
cost.

On the other hand, spatial knowledge, such as a floor plan,
is available in many scenarios and can be used to assist local-
ization without additional cost. While complex indoor spaces
block many positioning signals such as WiFi, which makes
localization challenging and difficult, they supply spatial con-
straints that are helpful for calibrating the localization error.
Landmarks are one of these spatial constraints useful for
indoor localization. A landmark is generally defined in the
field of linguistics and cognitive science as everything that
stands out of the background [9], [10]. In the context of indoor
localization, a landmark refers to a location point where at
least one type of sensors presents a distinctive, stable, and
identifiable pattern in the readings [2], [11]. Since these loca-
tion points are naturally distributed in indoor environments,
one can combine them easily to bound the localization error
with no extra cost.

The indoor localization systems that use landmarks have
been proposed in the literature, but they are usually applied
for tracking robots by using laser scanners or/and cameras
[12], [13]. The systems using these devices are economically
or/and computationally expensive and hence are not suitable
for indoor pedestrian localization. Although landmarks based
on smartphone built-in sensors are also used in some indoor
localization systems [2], [14], [15], the performance of these
systems relies highly on the completeness of landmarks. A
mismatch of landmarks may cause a large localization error
and even lead to the failure of localization.

In this article, we present LG-Loc, a novel and accurate
landmark graph-based indoor localization method for smart-
phones. Compared to the existing landmark-based localization
methods, which are either computation intensive or sensitive
to the completeness of the landmarks, our method is compu-
tationally efficient and can handle incomplete landmarks. A
landmark graph is defined as a directed graph where nodes
are landmarks and edges are accessible paths with heading
information. The proposed method consists of two phases:
1) offline and 2) online. In the offline phase, data from several
smartphone sensors (accelerometer, gyroscope, magnetometer,
barometer, light sensor, and WiFi) are collected to detect vis-
ited landmarks. Based on these landmarks and the floor maps,
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we are able to construct an initial landmark graph that consists
of landmarks that correspond to stairs, elevators, corners, and
turns. The locations of landmarks in the initial landmark graph
can be obtained from the floor maps. Then, we update the land-
mark graph by adding more landmarks (e.g., light landmarks
and WiFi landmarks) that cannot be directly obtained from
the floor maps in a crowdsourcing way. In the online phase,
the newly collected data are used for location initialization,
location estimating, and location calibration. First, the user’s
initial location is inferred by a hidden Markov model (HMM)-
based method. Then, her subsequent location is calculated in
real time by using the pedestrian DR (PDR) method. To elim-
inate the accumulated error of PDR, the estimated location is
regularly calibrated by matching the detected landmark with
those in the landmark graph.

The main challenges of using a landmark graph for accu-
rate indoor localization are as follows: 1) how to infer the
initial location without manual input or using WiFi finger-
printing; 2) how to accurately recognize landmarks satisfying
the defined three features (distinctiveness, stability, and identi-
fiability); and 3) how to deal with a landmark association issue
and missing landmarks. By solving the above challenges, we
have made the following contributions to this article.

1) We propose a novel landmark graph-based method for
indoor localization, which achieves a higher localization
accuracy and is computationally efficient. The experi-
mental results show that the proposed method performs
the best with a mean error of 0.80 m compared with
the map filtering methods (about 1.7 m), the WiFi
fingerprinting (about 3.5 m), and the PDR (about 8).
Meanwhile, our method performs about five times faster
than the map filtering method with 200 particles that can
achieve a relatively high accuracy compared to the PDR
and the WiFi fingerprinting.

2) We propose different rules for detecting varying land-
marks and design a metric called belief to deal with
the problems of multiple nearby landmarks and missed
landmarks. The existing research considers only an iso-
lated landmark for calibrating the accumulated error of
PDR, which does not work well when some landmarks
are missed or there are multiple landmarks nearby. These
problems are addressed by a landmark matching method
based on a landmark graph.

3) We propose a novel initial location inference method
by using a landmark graph-based HMM. The existing
systems either use WiFi fingerprinting to determine the
initial location of a user or ask the user to input an
initial location manually, which are labor intensive or
not user friendly. The proposed HMM-based location
inference method can determine the initial location of a
user without requiring the user’s active participation or
a WiFi fingerprint database.

II. RELATED WORK

In this section, we provide a brief overview of related
work on indoor localization and spatial information-aided
localization.

A. Indoor Localization

WiFi-based indoor localization is a popular method since it
can make use of the existing WiFi infrastructures and thereby
reduce the cost of deploying hardware required for localiza-
tion. Early WiFi-based systems usually convert the received
signal strength (RSS) to a distance using a certain signal prop-
agation model such as a log-distance path-loss model, which
is then used to calculate the location of a user through tri-
angulation. However, these systems usually suffer from the
low-accuracy problem due mainly to the multipath effect
of signals in complex indoor environments. To improve the
localization accuracy, some recent works have utilized the
channel state information (CSI) [16], [17] to drive angle-
of-arrival (AOA) or time-of-flight (TOF) information, which
is used for locating a user via triangulation. The triangu-
lation methods based on CSI can achieve centimeter-level
accuracy. Nevertheless, triangulation methods, regardless of
using RSS or CSI, require to know the locations of APs,
which are difficult to obtain in many public spaces, limiting
their applicability. To relieve the requirement for APs’ loca-
tion knowledge, fingerprinting methods have been proposed
[18]–[20]. The fingerprinting methods are also based on RSS
or CSI. The main challenge of fingerprinting is that it requires
a time-consuming and labor-intensive site survey process.
Some solutions have been proposed to reduce the finger-
print collection and calibration effort, such as crowdsourcing
with active user participation [21], building a signal prop-
agation model [22], or certain calibration fingerprints [23].
Compared to RSS-based localization for both triangulation and
fingerprinting, CSI-based localization achieves much higher
localization accuracy, but it has poorer coverage and the
extraction of CSI is not supported by the current smartphones,
limiting the applicability of CSI-based localization.

DR is another commonly used indoor localization method,
which uses inertial sensor readings to estimate the real-time
location of a target, given an initial location [24]. The advent
of sensor-rich smart devices has enabled DR to be widely
used, which is especially useful for localization and tracking
in the wireless signal-denied areas. The advantage of DR is
that it does not require extra infrastructure and has no coverage
limitation. However, DR suffers from the accumulated error
problem that the localization accuracy decreases over time,
leading to the long-term DR practically being useless. A com-
monly used solution is to integrate DR with other positioning
techniques, such as WiFi [25], UWB [26], and vision [27],
which can eliminate both the accumulated location error of
DR and the jumping estimations by absolute positioning tech-
niques for a short time. However, these absolute localization
techniques are not always available and often need to spend
extra cost on deployment and maintenance.

Apart from WiFi-based methods and DR, there are also
other indoor localization methods based on light, RFID, mag-
netism, Bluetooth, Infrared, sound, ZigBee, etc. In recent
years, visible light-based localization has attracted the atten-
tion of many researchers [28]–[30]. It can achieve decimeter-
level and even a centimeter-level accuracy and has the
potential to be applied in robot navigation, unmanned aerial
vehicle (UAV) navigation, etc. However, unlike WiFi-based
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Fig. 1. System architecture of LG-Loc.

localization, which can make use of the existing wireless
access points, visible light-based localization requires mod-
ifying the existing lighting infrastructure for the purpose of
localization. Also, there is no uniform international standard
regarding visible lights for the purpose of indoor localization.

B. Spatial Information-Aided Localization

Spatial Knowledge can be used for assisting indoor local-
ization at no extra cost for deploying hardware. There are two
main methods of fusing spatial information to improve loca-
tion accuracy, namely, map matching and spatial model-aided
method [3]. Landmark matching [2] is a popular map matching
method because of its simplicity and high operation efficiency.
However, it is sensitive to the completeness of landmark detec-
tion, and inaccurate matching may lead to a larger localization
error. Other map matching methods, such as trajectory match-
ing [31] and the Bayesian approaches [32], [33] can usually
achieve higher accuracy, but they are computationally expen-
sive, making them impractical for applications running on
resource-limited mobile devices such as smartphones.

Another method of fusing spatial information to enhance
localization accuracy is using spatial models. Compared with
basic indoor maps, indoor spatial models include richer
information, not only static objects (e.g., rooms, doors, sen-
sors, and furniture) and dynamic objects (e.g., people), but
also their spatial relationships. With more geometric, topolog-
ical, and semantic information, spatial models can be used to
significantly improve location accuracy as well as to achieve
more reliable location-based services [34], [35]. However,
automated methods for reconstructing indoor spatial models
are in their infancy and manual methods are labor intensive
and slow [36].

III. SYSTEM OVERVIEW

The system architecture of LG-Loc is shown graphically
in Fig. 1. When a user enters a building, she can launch the
localization application to obtain her location within the build-
ing in real time. The application first requests the landmark
graph of this building, which is constructed and stored in the
server in the training phase. Then, it starts collecting sensor

readings from the WiFi module, accelerometer, magnetometer,
gyroscope, barometer, and light sensors together with the
corresponding timestamps. These data are first preprocessed
through a low-pass filter and subsequently used to detect land-
marks and estimate the location. The initial location of the user
can be obtained by using the WiFi fingerprinting method (if
the corresponding WiFi fingerprint database is available) or
inferred via utilizing an HMM-based algorithm according to
the landmark graph and sensor readings (if the WiFi fingerprint
database is not available).

In the following, we will elaborate on each of the three
key modules: 1) landmark graph; 2) landmark matching; and
3) location estimation with landmark graph constraints.

IV. LANDMARK GRAPH

An initial concept of the landmark graph has been presented
in our previous work [37]. In this article, we extend the
landmark graph by introducing more types of landmarks, and
an automated update of the landmark graph. In the following,
we first give the definition of landmarks and their recognition
rules. Then, we show the construction of an initial landmark
graph from floor maps and the updating of the landmark graph.

A. Definition and Recognition of Landmarks

Landmarks in this article are sensory landmarks [11], which
are defined as location points where sensor readings present a
distinct, stable, and identifiable change pattern. For instance,
the gyroscope presents a distinct change when the user takes a
turn. A landmark has three features: 1) distinctiveness; 2) sta-
bility; and 3) identifiability. The distinctiveness means that
the change pattern of sensor readings for a landmark must be
distinctive, which stipulates that this landmark can be distin-
guishable from its surroundings. The stability means that a
landmark must be stable for a period of time, which means
that it does not change dynamically over time. The identifi-
ability means that a landmark must be detectable by one or
more types of sensors at the location point. Mathematically,
we define a landmark v as follows:

v =<(x, y), (R1, . . . ,RM)> (1)

where (x, y) denotes the coordinate of the landmark,
(R1, . . . ,RM) represents the detection rule in different types
of sensor readings, and M is the number of rules that this land-
mark possesses. A landmark may satisfy one or more types
of detection rules. For example, opening a door may impose
a change pattern on both the accelerometer and gyroscope
readings.

The landmarks can be categorized by the type of sensor used
to detect them. Modern smartphones have integrated various
sensors, including accelerometer, gyroscope, barometer, WiFi,
and light sensor. Accordingly, we can categorize landmarks
into different types as follows.

Accelerometer Landmark: The motion state of a user
changes at certain locations in an indoor environment, which
can be sensed by the accelerometer. For instance, when a user
opens a door, his or her motion state would change from walk-
ing to still, and then to walking. The location of the door can
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Fig. 2. Change in the amplitude of acceleration when a user passes through
a door.

be regarded as an accelerometer landmark if the user has to
experience this change every time he or she passes through
the door. Fig. 2 shows the change in the amplitude of accel-
eration when a user passes through a door. The assignment of
motion states (e.g., walking and still) to the accelerometer data
is based on a supervised classification method developed in
our previous work [38]. The change pattern of “Walking −→
Still (for a few seconds) −→ Walking” can be regarded as a
rule that checks whether a door is a potential accelerometer
landmark. This rule can also be used to detect other potential
landmarks, such as an indoor water fountain point and other
similar activity-related location points.

In our application, the rule Racc of accelerometer landmarks
is defined as

Racc = (
loct|mt−K1 : t == walking

&& mt:t+K2 == still

&& mt+K2 : t+K2+K1 == walking
)

(2)

where mt represents the user’s motion state (e.g., walking and
still) at time t, and K1 and K2 are the two window sizes of
accelerometer readings that determine the period of detecting
the corresponding motion state. When the user’s motion state
follows the pattern of “Walking −→ Still (for a few seconds)
−→ Walking,” the rule Racc is satisfied, representing that the
location point at time t is a potential accelerometer landmark.

Gyroscope Landmark: The walking direction of a user
changes when he/she takes a turn or passes a corner. This
change can be detected by using the magnetometer and the
gyroscope. However, the magnetometer readings tend to be
easily affected by ferromagnetic materials, leading to their
unsuitability for the detection of turns and corners. Therefore,
we use the gyroscope readings to detect turns and corners
since they are not influenced by ferromagnetic materials. Fig. 3
shows how the gyroscope readings change when the user takes
a left or right turn. To detect a gyroscope landmark, we define
the rule Rgyro of a gyroscope landmark as follows:

Rgyro = (
loct|

∣
∣θ̇t

∣
∣ > εgyro

)
(3)

where θ̇t is the gyroscope readings along the vertical direction.
If the absolute value of θ̇t is greater than a certain threshold

Fig. 3. Change in the gyroscope readings on the z-axis when a user takes a
turn. (The user holds the phone in hand.)

εgyro, we consider this location point as a potential gyroscope
landmark.

Barometer Landmark: The barometer is able to measure the
air pressure, which changes with the altitude or height. This
means that it can be used to detect the vertical movement of a
user (e.g., going upstairs or downstairs and taking an elevator).
Fig. 4 shows the change in the barometer readings when a user
walks horizontally, goes upstairs or downstairs, and takes an
elevator upward. The entrance and exit of stairs and elevators
can be regarded as barometer landmarks since they are identifi-
able, distinctive, and stable. The entrance detection is done by
detecting the change pattern “horizontal movement −→ ver-
tical movement.” Similarly, the exit is detected by using the
pattern “vertical movement −→ horizontal movement.” Both
change patterns are recognized by utilizing the barometer read-
ings. Let pi denote the average value of the ith window of air
pressure readings that contains the air pressure value at time t,
and let εbaro1 and εbaro2 be the thresholds used to detect the
user’s horizontal movement and vertical movement, respec-
tively. The rule to detect the entrance to a set of staircases or
an elevator is defined as

Rbaro1 =
(

loct|(|pi − pi−1|) < εbaro1

&&

∣
∣∣∣∣∣

i+Kp1∑

j=i+1

(
sgn

(
pj − pj−1

))
∣
∣∣∣∣∣
== Kp1

&& |pi+Kp1
− pi| > εbaro2

)
. (4)

The first term is for detecting the horizontal movement, and
the latter two terms are for detecting the vertical movement.
sgn is the sign function, which is described as

sgn
(
pj − pj−1

) =
⎧
⎨

⎩

1, if pj > pj−1
0, if pj = pj−1
−1, if pj < pj−1.

(5)

Similarly, we can define the rule to detect the exit from a
set of staircases or an elevator as

Rbaro2 =
(

loct|(|pi − pi+1|) < εbaro1

Authorized licensed use limited to: Deutsches Zentrum fuer Luft- und Raumfahrt. Downloaded on February 07,2021 at 10:42:32 UTC from IEEE Xplore.  Restrictions apply. 



GU et al.: LANDMARK GRAPH-BASED INDOOR LOCALIZATION 8347

Fig. 4. Change in the pressure when a user takes stairs or an elevator.

&&

∣∣
∣∣∣∣

i∑

j=i−Kp2+1

(
sgn

(
pj − pj−1

))
∣∣
∣∣∣∣
== Kp2

&& |pi−Kp2
− pi| > εbaro2

)
. (6)

The values of Kp1 and Kp2 are not constant, but are determined
dynamically. Their initial values are set to 1, and gradu-
ally increase as long as the value of the sign function keeps
unchanged.

WiFi Landmark: We define a location point that overhears
the strongest RSS from an AP within a certain region as a
WiFi landmark. There is usually only a small area in which
the RSS from a specific AP is the strongest. Such a point is
usually stable, distinctive, and identifiable. Fig. 5 denotes the
RSS from an AP while the user was walking in a corridor.
The location point at the 65th second is a WiFi landmark
since it receives the strongest RSS from the corresponding
AP compared to other location points.

Let RSSt denote the RSS from an AP at a location
point loct. Then, we can define the rule RWiFi of a WiFi
landmark as

RWiFi = (
loct|

(
RSSt == max

(
RSSt−KWiFi:t+KWiFi

))

&& RSSt > εWiFi
)

(7)

where εWiFi is a threshold to exclude the local maxima. We do
not consider a location point that witnesses a local maximum
of RSS (e.g., the one arising at the 20th second in Fig. 5)
as a landmark since it is not stable and cannot be detected
accurately.

Light Landmark: The light sensor built in a smartphone
can be used to measure the light intensity of the environment
that the phone’s screen faces. It can be used to detect the
projection location of a lamp installed on the ceiling, which
can be regarded as a landmark. As shown in Fig. 6, the light
sensor in the smartphone presents a peak of illuminance when
the user passes below a ceiling lamp. We define the rule Rlight
of a light landmark as

Rlight = (
loct|

(
LXt == max

(
LXt−KLight:t+KLight

))

&& LXt > εLight
)

(8)

Fig. 5. RSS from an AP at different locations.

Fig. 6. Change of luminance when a user passes a ceiling lamp.

where LXt represents the illuminance sensed by the built-in
smartphone light sensor at the location loct, and KLight is a
threshold that controls the range of light sensor readings used
to extract a peak. εLight is a threshold to exclude weak peaks
of illuminance.

B. Construction of Initial Landmark Graph

The locations of some landmarks correspond to the loca-
tions of doors, elevators, stairs, corners, and turns that can
be obtained from floor maps, which we assume are available.
Other landmarks, such as WiFi landmarks and light landmarks
can be gradually learned by combining sensor readings with
users’ trajectories, which can be used to assist subsequent
localization.

We can construct the corresponding landmark graph using
map information and outputs from the landmark detection
component. A landmark graph consists of nodes (landmarks)
and edges (accessible paths). Let G = (V, E) denote a land-
mark graph, where V = {v1, . . . , vN} is a set of landmarks and
E = {e1, . . . , eM} is the set of edges in graph G. Each edge
ei =< vj, vk, θjk, di > is a tuple consisting of two landmarks,
the direction from one landmark to the other, and the distance
between the two landmarks.

C. Updating of Landmark Graph

The landmark graph is initially constructed according to a
floor plan, which is incomplete since the floor plan does not
give the room-level details, such as the layout of furniture
or office desks. We also cannot obtain the locations of WiFi
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Algorithm 1: Update the Landmark Graph
Input : An initial landmark graph G, N trajectories, each contains ni

potential landmarks denoted by {vi
1, vi

2, . . . , vi
ni

}
Output: A landmark graph G with newly added landmarks

1 Assign the potential landmarks into N0 initial landmark clusters
denoted by {c1, . . . , cN0 }, each cluster contains one potential landmark

2 // Distance constraint-based clustering:
3 repeat
4 ∀i, j, if dist(ci, cj) <= dc&&rule(ci) == rule(cj) then
5 Merge the two clusters into one
6 end
7 until dist(ci, cj) > dc ∀i, j;
8 // Delete the clusters with too few elements:
9 foreach ci! = null do

10 if size(ci) < εc then
11 delete ci
12 end
13 end
14 Compute the size of remaining clusters, represented by Nc
15 // Update the landmark graph:
16 for i + + <= Nc do
17 Add a new node vi into G with the center of ci as the coordinate,

and the detection rule as a property of vi
18 Compute the heading and distance from node vi to each of its

neighbouring nodes that are already in G
19 Add all relative edges ej =< vi, vk, θik, dj > into G
20 end

landmarks and light landmarks from a floor plan. However,
these landmarks that cannot be derived from a floor plan can
be learned by crowdsourcing.

Suppose we have collected N trajectories of the user,
each trajectory contains ni potential landmarks denoted by
{vi

1, vi
2, . . . , vi

ni
}. Let N0 denote the total number of potential

landmarks from the N trajectories, namely, N0 = ∑N
i=1 ni.

These potential landmarks are the location points that satisfy
one type of landmark detection rules but are not yet included
in the current landmark graph. The updating procedure of the
landmark graph is described in Algorithm 1, where dist(ci, cj)

is a function used to compute the Euclidean distance between
the center’s coordinate of two landmark clusters ci and cj,
and rule is a function used to get the detection rule of the
corresponding landmark. dc is a distance threshold that indi-
cates whether or not two clusters can be merged, and Nc is a
threshold reflecting the stability of a landmark.

V. LANDMARK MATCHING

A key challenge to using landmarks for assisting localiza-
tion is to solve the data association issue [13], [39], [40]. In
other words, when there are multiple landmarks nearby, it is
difficult to determine the detected landmark. An additional
challenge is to deal with the case that one or more landmarks
are missing.

To solve the above problems, we define a belief bel to indi-
cate how much we can trust the location point that meets the
detection rule is a landmark. The belief that the location point
(xt, yt) is matched with the landmark vk in the landmark graph
is expressed as

bel(vk) = δ(Rk, Rt) · r(θk, θt) · g(dk, dt) (9)

where k is the index of landmark in the landmark graph. Rk

is the detection rule of the reference landmark vk, and Rt is

the type of the detected landmark at time t. θk and θt are the
reference heading and the estimated heading from the time of
visiting the last landmark to time t. dk and dt are the refer-
ence distance and the traveled distance from the last landmark
to a location (xt, yt). δ is the Dirac delta function, which is
defined as

δ(Rk, Rt) =
{

1, if Rk == Rt

0, otherwise
(10)

and r is the rectangle function, described as

r(θk, θt) =
{

1, if |θk − θt| < εtheta
0, otherwise

(11)

where εtheta is a heading threshold. The function g is
defined as

g(dk, dt) = e−|dk−dt|. (12)

If there are multiple possible landmarks nearby, the one
with the largest value of bel will be chosen as the detected
landmark. To reduce the risk of mismatching, we set a belief
threshold εbel to exclude fake landmarks. For instance, a user
may take a turn in the middle of a corridor, which may be mis-
takenly detected as a gyroscope landmark. However, since fake
landmarks have a lower belief, we are able to exclude them
by judging whether their belief is smaller than the threshold
εbel. We use only the landmarks with belief larger than εbel to
calibrate the accumulative error of PDR.

In some cases, some landmarks may be missing. For exam-
ple, certain landmarks at the locations of doors will be missed
if a door is left open since the user does not stop to open
the door (no “Walking −→ Still −→ Walking” pattern). The
lamps might be on or off at different times of the day, which
will lead to failure of the detection of the corresponding light
landmark. In these cases, we simply ignore them and do not
correct the user’s location until the next landmark is detected.

VI. LOCATION ESTIMATION

In this section, we introduce the proposed location estima-
tion method using a landmark graph. It includes location ini-
tialization and PDR-based location estimation with landmark
graph constraints.

A. Location Initialization

The initial location of an indoor localization system can be
obtained in a few ways. A popular way is to use the WiFi fin-
gerprinting method [41]. This is done by matching the newly
collected WiFi fingerprint with the fingerprints that are col-
lected and stored in a database in the training phase. The
drawback of obtaining the initial location by WiFi fingerprint-
ing is that it requires an offline training process, which is time
consuming and labor intensive.

Alternatively, the user can input an initial location when
launching the localization app. This way is adopted by many
systems since it does not require much effort to deploy or train
the systems. However, it needs active user participation, which
may not be user friendly and is even difficult if the user is not
familiar with the environment.
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In this article, we present a novel way to infer the user’s ini-
tial location which uses a landmark graph-based HMM [42].
Initially, the app has no location information of the user, and
thus the user is required to walk for a while, allowing the
app to collect enough sensor readings in order to estimate
her location. Then, these sensor readings are fed to the land-
mark recognition module and the PDR module to generate
a sequence of observations that consist of detected land-
marks (without location knowledge), distances, and directions
between these landmarks. Let S = {v1, . . . , vN} denote a set
of N hidden states (which are landmarks), O = {o1, . . . , oM}
represent a sequence of M observations and ok = (Rk, dk, θk).
Thus, the initial location inference can be modeled as a decod-
ing problem. Namely, given the observation sequence O and
a model λ = (A, B, π), choose a corresponding landmark
sequence Q = {v1v2 · · · vM} which best explains the obser-
vation sequence O. In the model λ, A and B are the state
transition matrix and emission matrix, respectively, and π is
the initial state distribution. Before the model can be exploited
to infer location, we need to compute the transition and
emission matrices.

Transition Probabilities: The values of the transition matrix
are obtained based on the landmark graph. In principle, the
element aij of the transition matrix A must meet the following
properties:

aij = P
(
st = vj|st−1 = vi

) ≥ 0 (13)
N∑

j=1

aij = 1 (14)

where st represents the landmark visited at time t. We define
the transition probability between two landmarks according
to whether there is a direct connection between them in the
landmark graph. A higher probability ph is assigned to the
landmark pair that has a direct connection and a lower proba-
bility pl is assigned to those without a direct connection. We
adopt the approach of probability assignment in [30], and the
values of high and low transition probabilities are computed
as follows:

ph = K · pl (15)
N∑

j=1

aij = I · ph + (N − I) · pl = 1 (16)

where K is the ratio between the higher probability and the
lower probability, and I is the number of state pairs with higher
transition probabilities.

Emission Probabilities: The emission probability reflects the
concept that each state emits an observation with a particu-
lar conditional probability distribution. Given the state si, the
probability bik can be computed using the following formula:

bik = P(ot = ok|st = si)

= max
1≤j≤deg+(si)

[
δ
(
Rj, R∗

k

) · r
((

θj, θ
∗
k

)) · g
(
dis

(
dj, d∗

k

))]

(17)

where δ, r, and g are the same functions as in (9), and deg+(si)

is the outdegree of si. R∗
k is the detection rule of the collected

Algorithm 2: HMM-Based Location Inference
Input : A landmark graph G, sensor readings from accelerometer,

gyroscope, magnetometer, barometer, WiFi, light sensor
Output: Initial location and current location

1 Extract the sequence of observations o1, o2, · · · , oM based on collected
sensor readings

2 Calculate the transition matrix A = aij and the emission matrix B = bik
according to the landmark graph and the observation sequence

3 // Initialization:
4 for i = 1 → N do
5 φ1(i) = πi · bi(o1)

6 �1(i) = 0
7 end
8 // Recursion:
9 for k = 2 → M do

10 for j = 1 → N do
11 φk+1(j) = max

1≤i≤N
[φk(i) · aij] · bj(ok+1)

12 �k+1(j) = argmax
1≤i≤N

[φk(i) · aij]

13 end
14 P∗ = max

1≤i≤N
[φk(i)]

15 if P∗ > εtermination then
16 // location determined
17 v∗

M = argmax
1≤i≤N

[φk(i)]

18 break;
19 end
20 end
21 // Path backtracking:
22 for t = k − 1 → 1 do
23 v∗

t = �t+1(v∗
t+1)

24 end
25 // Location Inference:
26 Compute the initial location (x0, y0) and current location (xk, yk)

according to the first visited landmark v∗
1 and the last visited

landmark v∗
k

observation ok, and Rj is the detection rule of sj connected
from si by an edge in the landmark graph. θ∗

k is the observed
heading and θj is the heading of the edge connecting si to sj.
d∗

k is the observed distance and dj is the traveled distance from
last si to sj. Then, the emission matrix B is normalized.

We use the Viterbi algorithm to initialize the localization
system. The objective is to find a sequence of landmarks Q =
{v1v2 · · · vM} that best explains the given observation sequence
O = {o1, . . . , oM}. We define the Viterbi variable as

φk(i) = max
v1,v2,...,vk−1

P[v1v2 · · · vk = i, o1o2 · · · ok|λ]. (18)

It represents the highest probability along a single landmark
path at time k, which best explains the given observations. By
induction, we can further obtain

φk+1(j) =
[

max
i

φk(i)aij

]
· bj(ok+1). (19)

To infer the initial location and current location of a user,
we require to keep track of the argument that maximizes
the Viterbi variable for each t and j. The complete algo-
rithm of determining the initial location and current location
is described in Algorithm 2.

In the above algorithm, the initial state distribution π is set
according to the type of the first detected landmark. Namely,
we set πi = 1/N0, 1 ≤ i ≤ N0, where N0 is the number of
landmarks having the same detection rule as the first observa-
tion. Then, according to subsequent observations, we can use
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Fig. 7. Peaks of the acceleration when a user walks.

the above algorithm to initialize the localization system. The
initial location is determined when the maximum of the Viterbi
variable φk is larger than a threshold εtermination. This means
that the path becomes unique given k observation sequences.

B. PDR-Based Location Estimation With Landmark Graph
Constraints

The PDR method consists of step event detection, step
length estimation, and heading estimation. We first introduce
the three steps of PDR and then present how a landmark graph
can be used to calibrate the accumulative error of PDR.

Step Event Detection: The step event can be captured by
using the smartphone built-in accelerometer because its read-
ings present a periodical and repetitive pattern when the user
is walking [43], [44]. The number of steps that the user
takes corresponds to the number of peaks in the amplitude of
accelerometer readings. For instance, Fig. 7 shows the change
in the amplitude of acceleration when a user walks normally,
in which magenta triangles represent the peaks of acceler-
ation and each peak corresponds to one step. By detecting
and counting these peaks, we are able to compute the num-
ber of steps and to further calculate the step length. To make
the peak-based detection robust to phone poses, we use the
amplitude of the acceleration

acct =
√

acc2
xt

+ acc2
yt

+ acc2
zt

(20)

where accxt , accyt , and acczt are the accelerometer read-
ings along the x-axis, y-axis, and z-axis of the phone at
time t, respectively. To avoid the effect of false walking and
noise caused by changing phone carrying ways, we adopt the
periodicity and similarity constraints strategy in [43]. The peri-
odicity is the difference in the timestamp of two neighboring
accelerometer readings. The periodicity constraint is used to
limit the range of walking periodicity to a certain interval
(e.g., [0.4, 1]) so as to overcome the overcounting problem to
some extent. Another useful constraint is the similarity con-
straint, which is based on the observation that the acceleration
peaks for two steps are close when users walk naturally. Peaks
that exceed a similarity threshold are identified as false peaks.

Only an acceleration peak that satisfies both the periodicity
and similarity constraints is counted as one step.

Step Length Estimation: Different models, such as the
Weinberg model [45], the Kim model [46], the linear
model [47], and the deep learning model [48], can be used
to estimate a user’s step length, but these models either are
sensitive to the amplitude of acceleration, require the knowl-
edge of the user’s stature or a large amount of data to train. In
this article, we combine the step counting-based method with
the landmark graph to compute the step length of the user.
Initially, the step length is set to a constant l0, which will
be updated once the user passes two neighboring landmarks.
Let v1 and v2 indicate the two neighboring landmarks that a
user passes subsequently, and Ns be the number of steps that
a user takes to travel from v1 to v2. Then, we can calculate l
as follows:

l = dist(v1, v2)

Ns
(21)

where dist(v1, v2) is the Euclidean distance between v1 and v2.
Note that the trajectory of the user traveling from v1 to v2
should be a straight line, otherwise we keep the last esti-
mated step length. The advantage of our step length estimation
method is that it does not require the user’s stature information
and can adapt to varying walking speeds since it keeps updated
as the user passes two neighboring landmarks that are on a
straight line.

Heading Estimation Considering Constraints: Both the
compass and the gyroscope built in a smartphone can be used
to compute the heading of the smartphone user. However, the
compass is vulnerable to ferromagnetic materials while the
gyroscope suffers from the drift problem. A solution to this
is combining the compass readings and gyroscope readings
by using the Kalman filter or other similar techniques [14].
However, the readings in the two sensors still fluctuate even
when the user walks along a straight line.

In fact, we observe that it is not necessary to get the exact
movement direction since the movement of a user in an indoor
environment is constrained by the geometry of the environ-
ment. For example, a user can only move in two directions
in a corridor. Constraining users’ motion direction can help
achieve higher location accuracy since the constrained direc-
tion is more robust than specific heading readings provided
by the compass or gyroscope. In this article, we constrain
the user’s walking direction when she walks in a corridor or
corridor-like environment by using the landmark graph where
the direction between two landmarks is constrained and pre-
set. The compass and gyroscope are only used to provide a
coarse estimation to compute the heading sector. When the
user walks in a room where there are no landmarks, we use
the gyroscope readings to estimate the heading.

The complete proposed method is described in Algorithm 3.
It starts from the location initialization module, which uses
an HMM-based method to initialize the location. Then, the
acceleration-based peak detection is used to partition the sen-
sor readings into segments. When there is not a salient peak,
a fixed window size (e.g., 50 Acc samples) is used to partition
sensor data. A segment starts at a time moment witnessing an
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acceleration peak and ends at the next time moment appear-
ing another acceleration peak. Each segment corresponds to
the data collected during the period of the user taking a step
unless the acceleration variance of this segment is smaller than
an acceleration threshold (which is 0.5 in this article) that is
used to distinguish walking state from still state. After detect-
ing a step event, we conduct the standard PDR method under
the landmark graph constraints on the step length and head-
ing. Let (xk, yk) denote the location of a user at step k, lk be
the corresponding step length, and θk represent the heading,
then the location estimation using the PDR method can be
written as

xk = xk−1 + lk sin(θk) (22)

yk = yk−1 + lk cos(θk) (23)

θk = fθ
(
θ∗

k , θ r
k

)
(24)

where fθ is the function that determines the heading at step
k according to the compass reading θ∗

k , and the heading
information θ r

k in the landmark graph. The step length lk can
be obtained by using (21). After the location estimation using
the PDR for each step, sensor readings of each type starting
from the time that witnesses a landmark to the current time
that the user takes a step are fed to the landmark detection
module to detect whether a potential landmark is encountered.
A potential landmark is confirmed by the landmark matching
module by comparing its belief with the belief threshold. If a
landmark is detected and confirmed, its location will be used
to correct the user’s location and to update her step length.

VII. EXPERIMENTS AND RESULTS

The proposed indoor localization solution was evaluated
by experiments conducted in an office building. The office
building consists of eight floors, which is a typical office
environment, including elevators, staircases, corridors, com-
mon rooms, and office rooms. The testing path goes through
two floors of this building, and its length is about 362 m.

The device we used is a Google Nexus 6 smartphone
equipped with WiFi, accelerometer, magnetometer, gyroscope,
barometer, and light sensor. Six volunteers took part in the
experiments. The participants walked along the preset path
with the phone in hand and reported the preset markers they
encountered to evaluate the location accuracy. Note that the
effect of the different phone carrying ways on the localiza-
tion performance has been analyzed in our previous work [14]
and many other works [49], [50]. The data recorded include
the media access control (MAC) address of visible wireless
access points and corresponding RSS, and readings from the
accelerometer, gyroscope, compass, barometer, and light sen-
sor. All these data were recorded with their corresponding
timestamps so that we could align data from different sensors
to jointly infer ground-truth location points.

To obtain the ground truth, we set 126 markers along the
testing path with an interval of 3 m. When the participants
passed a marker, they were required to click this marker on
an Android app that we developed for collecting sensor data
and recording ground-truth locations.

Algorithm 3: Landmark Graph-Based Location
Estimation

Input : A landmark graph G, sensor readings from accelerometer
(acc), gyroscope (gyro), compass (θ∗), barometer (baro), WiFi
(wifi), light sensor (light)

Output: Real-time location estimation
1 Location initialization using the proposed HMM-based method to

obtain (x0, y0)

2 while new sensor readings are available do
3 [acct−1:t] = peakDetect(acc); //Conduct the acceleration -based

peak detection, and return the accelerometer readings between the
last peak pkt−1 and current peak pkt

4 if var([acct−1:t]) > 0.5 then
5 /* A step happens */
6 lk = lk−1;//The initial step length l0 is known
7 θk = estimateHeading(G, θ∗

k , v∗); //Estimate the heading
according to the landmark graph, compass readings, and the
last visited landmark v∗

8 [xk, yk]=computeNextLocation(lk, θk); //Compute the next
location

9 end
10 [xr, yr, R, t∗]= landmarkDetect (acc, gyro, baro, wifi, light);

//Detect different types of landmarks
11 [v_id] = landmarkMatch(G,xr, yr, R, t∗); //Compute the belief of

the detected potential landmark, if bel(v_id) > εbel, then return the
id of this landmark in the landmark graph

12 if v_id > 0 then
13 /* If the detected landmark is confirmed as a landmark in the

landmark graph */
14 [xk, yk] = correctError(G, v_id, loc, t∗); //Use the location of

the detected landmark to correct the user’s location, and
return the current corrected location

15 lk = updateStepLength(G, lk−1, v∗, v_id, n); //Compute the
step length according to the step length model, the last
reference step length lk−1, the last visited landmark v∗ and
the detected landmark v_id, and the number of steps that the
user takes to travel from v∗ to v_id

16 end
17 print(xk , yk); // Output the location estimation
18 end

TABLE I
PARAMETER SETTING

Table I gives the values of parameters of our landmark
detection methods, and those of the methods we used for
comparison with our method.

A. Distribution of Landmarks

In total, there are 83 landmarks in our testing environment,
including 5 accelerometer landmarks, 8 barometer landmarks,
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Fig. 8. Landmark distribution density.

24 gyroscope landmarks, 12 light landmarks, and 34 WiFi
landmarks. It should be noted that some landmarks of differ-
ent types are distributed at the same location point or share
a small area (e.g., 1 m2). This is because different sensors
would present a landmark pattern when the user performs
some activities. For instance, both a user’s motion state and
walking direction change when she opens a door, which will
impose a landmark pattern on the accelerometer readings and
the gyroscope readings. These landmarks within a small area
can be merged as a landmark with multiple detection rules.
When one of these detection rules is met, this landmark would
be verified and used to correct the user’s location if it meets
the belief requirement. After merging these landmarks within
a small area into one landmark, we obtain 51 landmarks for
assisting localization.

Fig. 8 shows the landmark distribution density. The biggest
distance between two neighboring landmarks is about 34 m,
while the median distance is about 6 m. This relatively densely
distributed landmarks can ensure that our indoor localization
method achieves an ideal accuracy, which we will show in the
following section.

B. Accuracy of Step Counting and Step Length Estimation

Both the step detection and step length estimation have
an impact on the accuracy of localization. To evaluate
the performance of the peak detection-based step counting
method, we conducted experiments with six participants. Each
participant was asked to walk 300 steps in two phone carrying
ways: 1) normal, the participant carried the phone in a fixed
pose (in a trouser’s pocket) during walking and 2) free, the
participant carried the phone in arbitrary poses during walk-
ing. Table II shows the accuracy of step counting using peak
detection and peak detection with the periodicity and simi-
larity constraints in the two phone poses. It depicts that the
peak detection with constraints can achieve a higher accuracy
of step counting (more than 97% on average) than the gen-
eral peak detection method (about 94%). We argue that the
achieved accuracy is high enough for the landmark graph-
based localization as the accumulated error will be regularly
calibrated by using landmarks information.

Then, we analyze the performance of step length estimation.
The step length estimation used in this article is based on the

TABLE II
ACCURACY OF STEP COUNTING

Fig. 9. Stability of step periodicity.

argument that the step length is relatively stable when a user
walks naturally for a short period of time. For the same user,
her step length is mainly affected by her walking frequency
that corresponds to step periodicity. To justify the above argu-
ment, we analyze the stability of step periodicity. As shown
in Fig. 9, the periodicity of most steps falls in the interval
of [0.5, 0.7], which is relatively stable. It approximately fol-
lows a normal distribution. Considering that the distribution
of landmarks is dense, the accumulated error caused by the
step length estimation can be regularly corrected. More details
about the step length estimation can be found in [48].

C. Initial Location Determination

We randomly selected ten location points along the test-
ing path as the respective starting location for ten tests (the
system did not have the coordinate knowledge). Then, we
tested the proposed HMM-based method to initialize the local-
ization system. Table III shows the testing results of the ten
location points. It shows that the average distance that a user
has to travel in order to determine her initial location is about
9.95 m, which is relatively short for most applications.

D. Localization Accuracy

We compare the localization accuracy of the proposed
method with that of popular indoor localization methods,
including PDR I (Acc + Compass), PDR II (Acc + Gyro) [51],
WiFi fingerprinting [52], and map filtering [53]. Both PDR I
and PDR II methods use the step counting-based method
to calculate the step length, but PDR I uses compass read-
ings (inferred from magnetometer readings and accelerometer
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TABLE III
DISTANCE REQUIRED TO DETERMINE THE INITIAL LOCATION

readings) to estimate the heading while PDR II uses the
gyroscope readings to compute the heading (with the compass
readings to provide initial heading). For the WiFi fingerprint-
ing method, a fingerprint database was constructed by using
data of five trajectories in the training phase. The ground-
truth locations of fingerprints in the training phase were
obtained according to the marker’s data. The ground truth
location between the two markers was computed by using the
time interpolation method. We compared two fingerprinting
methods with different parameters in the fingerprint matching
process, namely, fingerprinting I (which chooses the location
of the nearest neighbor in the fingerprint database as the local-
ization result), and fingerprinting II (which uses the average
of K-nearest neighbors’ location as the localization result,
K = 3). In the map filtering method, a particle filter was used
to fuse the PDR II method with the floor plan. The particles
that violated space constraints, such as passing through a wall
or obstacle, were removed from the candidate samples by set-
ting the weights of these particles to zero. We considered two
map filtering methods with different particle number: 1) map
filtering I (200 particles) and 2) map filtering II (500 particles).

Figs. 10 and 11 show the trajectories calculated by different
methods. The reason why the trajectories seem to be discon-
tinuous is that the testing path goes through two floors and we
do not show the staircases in the figures for simplicity. The
ground truth locations, which were obtained from the markers’
data, are marked with black circles. The trajectory (marked
in red) computed by our method can completely match the
ground-truth path. On the contrary, there is a big deviation in
the trajectory by the PDR I (in green) and that by the PDR II
(in blue) from the testing path. The trajectories obtained from
the WiFi fingerprinting methods are usually matched with the
testing path, but they might have some jumps because of the
fluctuation characteristics of the WiFi signal. The map filter-
ing methods can mostly be matched with the testing path, but
sometimes cannot converge to the testing path when the error
of the PDR becomes too large.

Fig. 12 shows the cumulative distribution function of the
localization error achieved by different methods, from which
we can see that the proposed method significantly outperforms
other methods. Specifically, the proposed method reaches an
accuracy of 88% with the error less than 1.5 m, which is much
higher than that of the map filtering (about 63%) and that
of the WiFi Fingerprinting (about 33%). The PDR methods

Fig. 10. Trajectories computed by different methods (on the fourth floor).

Fig. 11. Trajectories computed by different methods (on the fifth floor).

Fig. 12. Accuracy comparison.

perform worst since they do not consider spatial constraints
or any prior knowledge (e.g., WiFi fingerprints). Table IV
demonstrates the mean error of different methods. Our method
performs the best with a mean error of 0.80 m, followed by
the map filtering methods (about 1.7 m). The mean error of
the WiFi fingerprinting method using NN for matching is sim-
ilar to that of fingerprinting using KNN for matching (3.5 m).
The PDR methods can only achieve a mean error of greater
than 7-m due to the intrinsic error of inertial sensors.

E. Computational Efficiency

We compare the computational efficiency of our method
with the map filtering method that is widely used to fuse a floor
plan with PDR and can achieve a relatively high-localization
accuracy. Table V shows the computation time for the
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TABLE IV
LOCALIZATION ERROR ACHIEVED BY DIFFERENT METHODS

TABLE V
TIME EFFICIENCY COMPARISON (FOR A TRAJECTORY WITH A LENGTH

OF ABOUT 360 m)

estimation of a user’s location on a trajectory with an approx-
imate length of 360 m by our method and the map filtering
methods. Our method performs about five times faster than
the map filtering method with 200 particles. Increasing the
number of particles would lead to a significant increase in the
computation load of the map filtering method. This is because
the map filtering methods require to detect whether the parti-
cles cross a wall or other obstacles, which is a frequent and
time-consuming operation. In contrast, our method corrects
the accumulated error of the PDR by using a landmark graph,
which does not need to detect whether the estimated loca-
tion crosses a wall or other obstacles. Therefore, our method
is more suitable to run on the resource-limited computing
platforms, such as smartphones and smartwatches.

VIII. DISCUSSION

We have demonstrated a landmark graph-based indoor local-
ization method, which is low cost, robust, and achieves high
accuracy. By organizing sensory landmarks in a graph, we are
able to achieve an accuracy under 1 m, which is much higher
than the existing methods. To reduce the human effort to man-
ually input her initial location or collect WiFi fingerprints, we
have shown how the landmark graph can be effectively used to
infer the initial location via an HMM. To deal with the issues
of landmark association and missed landmarks, we designed
a belief metric for accurate landmark matching.

While the proposed method has shown excellent
performance, there are still some potential issues worth
exploring in the future. First, the proposed method uses a
variety of sensors in a smartphone, which may drain the
smartphone’s power quickly. Fortunately, recent advances
in the battery capacity and quick charging technology are
promising to help relieve the issue. Nevertheless, it will be
worthwhile to investigate energy-saving strategies to reduce
the sensors’ sampling frequency or to turn off some sensors
that are not used for a period of time. Second, the proposed
method may not work well in open areas (e.g., large halls)
where there are not enough landmarks. This issue should

be addressed by integrating more sensors or information
(e.g., camera), which can further increase the scalability and
robustness. Third, most landmarks are detected by using cer-
tain defined rules, which require to define certain thresholds
empirically. Recent advances in machine learning, especially
in deep learning can be useful for detecting landmarks in
an unsupervised or semisupervised way [54], [55]. Fourth,
we have not considered the cooperation between multiple
devices, which is a promising direction for future research.
Different devices may lie at different locations, exchanging
the information (e.g., locations, distances to landmarks)
between these devices will certainly improve the accuracy.

IX. CONCLUSION

In this article, we presented a novel, low-cost, high-accuracy
indoor localization method based on the proposed landmark
graph. Landmarks can be detected by using sensor activities
and building a correspondence between the sensor activity
and location information. Compared to the existing indoor
localization methods, our method can achieve a better localiza-
tion accuracy and has a higher computation efficiency, which
means it is more suitable to run on the mobile platform.
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